Probabilistic Ranking of Database Query Results
ثبت نشده
چکیده
We investigate the problem of ranking answers to a database query when many tuples are returned. We adapt and apply principles of probabilistic models from Information Retrieval for structured data. Our proposed solution is domain independent. It leverages data and workload statistics and correlations. Our ranking functions can be further customized for different applications. We present results of preliminary experiments which demonstrate the efficiency as well as the quality of our ranking system.
منابع مشابه
A Trust Based Probabilistic Method for Efficient Correctness Verification in Database Outsourcing
Correctness verification of query results is a significant challenge in database outsourcing. Most of the proposed approaches impose high overhead, which makes them impractical in real scenarios. Probabilistic approaches are proposed in order to reduce the computation overhead pertaining to the verification process. In this paper, we use the notion of trust as the basis of our probabilistic app...
متن کاملApproximate Lifted Inference in Probabilistic Databases
This paper proposes a new approach for approximate evaluation of #P-hard queries over probabilistic databases. In our approach, every query is evaluated entirely in the database engine by evaluating a fixed number of query plans, each providing an upper bound on the true probability, then taking their minimum. We provide an algorithm that takes into account important schema information to enume...
متن کاملApproximate Lifted Inference with Probabilistic Databases
This paper proposes a new approach for approximate evaluation of #P-hard queries with probabilistic databases. In our approach, every query is evaluated entirely in the database engine by evaluating a fixed number of query plans, each providing an upper bound on the true probability, then taking their minimum. We provide an algorithm that takes into account important schema information to enume...
متن کاملA Probabilistic Framework for Vague Queries and Imprecise Information in Databases
A probabilistic learning model for vague queries and missing or imprecise information in databases is described. Instead of retrieving only a set of answers, our approach yields a ranking of objects from the database in response to a query. By using relevance judgements from the user about the objects retrieved, the ranking for the actual query as well as the overall retrieval quality of the sy...
متن کاملBuilding Ranked Mashups of Unstructured Sources with Uncertain Information
Mashups are situational applications that join multiple sources to better meet the information needs of Web users. Web sources can be huge databases behind query interfaces, which triggers the need of ranking mashup results based on some user preferences. We present MashRank, a mashup authoring and processing system building on concepts from rank-aware processing, probabilistic databases, and i...
متن کامل